

International Journal of

Electrical and Computer System Design
www.ijecsd.com

11

Very High Speed AES Implementation For Next Generation Internet Security

 D.Sai Teja 1, A.Ashwin2, S.Pavan Sai Krishna3

1,2, 3National Institute Of Technology Puducherry, Puducherry, India, dsaiteja1@gmail.com

Abstract: The Advanced Encryption Standard (AES) specifies a FIPS-approved cryptographic
algorithm that can be used to protect electronic data. The AES algorithm is a symmetric block cipher
that can encrypt (encipher) and decrypt (decipher) information. Encryption converts data to an
unintelligible form called cipher text; decrypting the cipher text converts the data back into its original
form, called plaintext. The AES algorithm is capable of using cryptographic keys of 128, 192, and
256 bits to encrypt and decrypt data in blocks of 128 bits. Due to the growth of applications in Internet
and wireless communication, more and more users require the security measures and devices for
protecting the data, which users transmit over the channels. Since nobody can guarantee that the
information will not be stolen over open communication channels, it is a general way to encrypt the
information before they are transmitted into the channels. The AES algorithm has broad applications,
including smart cards and cellular phones, WWW servers and automated teller machines (ATMs),
and digital video recorders. Compared to software implementations, hardware implementations of
the AES algorithm provide more physical security as well as higher speed.

Keywords: AES, encipher, cryptographic keys, decipher

1. Introduction

 There are many crypto-system developed in
the past. According to the key type, the cryptography
can be classified into two types, such as the
asymmetric-key and symmetric-key cryptography.
Asymmetric-key cryptography manipulates two different
keys for encryption and decryption and provides a
robust mechanism for the key transportation. On the
other hand, symmetric-key cryptography uses an
identical key for both encryption and decryption, which
is more efficient for large amount of data Moreover,
resource-sharing scheme will also be employed to
reduce the hardware complexity of the cipher and
decipher.

This standard specifies the Rijndael algorithm ([3] and
[4]), a symmetric block cipher that can process data
blocks of 128 bits, using cipher keys with lengths of 128,
192, and 256 bits. Rijndael was designed to handle
additional block sizes and key lengths; however they
are not adopted in this standard.

Throughout the remainder of this standard, the
algorithm specified herein will be referred to as “the
AES algorithm.” The algorithm may be used with the
three different key lengths indicated above, and
therefore these different “flavors” may be referred to as
“AES-128”, “AES-192”, and “AES-256”.

This specification includes the following sections:

1. Algorithm specification, covering the key expansion,
encryption, and decryption routines;

2. Implementation issues, such as key length support,
keying restrictions, and additional block/key/round
sizes.

The standard concludes with several appendices that
include step-by-step examples for Key Expansion and
the Cipher, example vectors for the Cipher and Inverse
Cipher, and a list of references.

Firstly, a look at the history and background of
encryption should produce a clearer understanding for
the need of security and how implementations such as
the one being produced can help with this need.

The next part of this review will look at the more specific
encryption technique known as the Advanced
Encryption Standard (AES) and explain why it is used,
how it works and how it can be implemented. Following
this, the investigation must be expanded to search for
solutions for the problem at hand. This involves looking
for possible optimization techniques and how they can
be incorporated into the solution as well as highlighting
the differences needed between the two
implementations.

In addition, this review will be considering other factors
which will contribute to the overall performance of the
final implementations. These factors are likely to have

mailto:dsaiteja1@gmail.com

International Journal of Electrical and Computer System Design, Vol. 01, pp.11-14

Sai Teja, Ashwin, Pavan 12

a large effect of the overall efficiency of algorithms.
Finally, due to the rapid advances in the technology
of encryption and cryptanalysis it is necessary to
examine the likelihood of the dissertation findings
being obsolete shortly after they are produced. This
has been known to happen in the past where
weaknesses are found in other encryption systems.
If this was the case then it may be necessary to use
another encryption standard.

2. AES Algorithm

For the AES algorithm, the length of the
input block, the output block and the State is 128
bits. This is represented by Nb = 4, which reflects
the number of 32-bit words (number of columns) in
the State.

For the AES algorithm, the length of the
Cipher Key, K, is 128, 192, or 256 bits. The key
length is represented by Nk = 4, 6, or 8, which
reflects the number of 32-bit words (number of
columns) in the Cipher Key.

For the AES algorithm, the number of
rounds to be performed during the execution of the
algorithm is dependent on the key size. The number
of rounds is represented by Nr, where Nr =

10 when Nk = 4, Nr = 12 when Nk = 6, and
Nr = 14 when Nk =8.

The only Key-Block-Round combinations
that conform to this standard are given in Fig. 1. For
implementation issues relating to the key length,
block size and number of rounds.

Figure1. Key-Block-Round Combinations

For both its Cipher and Inverse Cipher, the AES
algorithm uses a round function that is composed of
four different byte-oriented transformations: 1) byte
substitution using a substitution table (S-box), 2)
shifting rows of the State array by different offsets,
3) mixing the data within each column of the State
array, and 4) adding a Round Key to the State.
These transformations (and their inverses) are
described in this section

2.1 Cipher

At the start of the Cipher, the input is copied to the
State array using the convention. After an initial
Round Key addition, the State array is transformed
by implementing a round function 10, 12, or 14
times (depending on the key length), with the final
round differing slightly from the first Nr-1 rounds.
The final State is then copied to the output.The
overall structure of AES for the case of 128-bit
encryption is shown below:

Figure 2: Overall Structure of AES for the case of
128-bit encryption key

The round function is parameterized using
a key schedule that consists of a one-dimensional
array of four-byte words derived using the Key
Expansion routine.

The Cipher is described in the pseudo code
in Fig. 3. The individual transformations -
SubBytes(), ShiftRows(), MixColumns(), and
AddRoundKey() – process the State and are
described in the following subsections. In Fig.2, the
array w [] contains the key schedule

As shown in Fig. 3, all Nr rounds are
identical with the exception of the final round, which
does not include the MixColumns() transformation.

Cipher showing values for the State array
at the beginning of each round and after the
application of each of the four transformations
described in the following sections.

International Journal of Electrical and Computer System Design, Vol. 01, pp.11-14

Sai Teja, Ashwin, Pavan 13

Fig.3. Pseudo Code for the Cipher

2.2 Key Expansion

The AES algorithm takes the Cipher Key, K, and
performs a Key Expansion routine to generate a
key schedule. The Key Expansion generates a total
of Nb (Nr + 1) words: the algorithm requires an
initial set of Nb words, and each of the Nr rounds
requires Nb words of key data. The resulting key
schedule consists of a linear array of 4-byte words,

The expansion of the input key into the key
schedule proceeds according to the pseudo code in
Fig10.

SubWord() is a function that takes a four-byte input
word and applies the S-box (Sec. 3.1.1, Fig. 5) to
each of the four bytes to produce an output word.
The function RotWord() takes a word [a0,a1,a2,a3]
as input, performs a cyclic permutation, and returns
the word [a1,a2,a3,a0]. The round constant word
array, Rcon[i], contains the values given by [xi-
1,{00},{00},{00}], with x i-1 being powers of x (x is
denoted as {02}) in the field GF(28), as discussed
in Sec. 5.2 (note that

i starts at 1, not 0) performs a cyclic permutation,
and returns the word [a1,a2,a3,a0]. The round
constant word array, Rcon[i], contains the values
given by [xi-1,{00},{00},{00}], with x i-1 being
powers of x (x is denoted as {02}) in the field
GF(28), as discussed in Sec. 5.2 (note that i starts
at 1, not 0).

From Fig10 it can be seen that the first Nk words of
the expanded key are filled with the Cipher Key.

the previous word, w[i-1], and the word Nk positions
earlier, w -

-

round constant, Rcon[i]. This transformation
consists of a cyclic shift of the bytes in a word
(RotWord()), followed by the application of a table
lookup to all four bytes of the word (SubWord()).

2.3 Inverse Cipher

The Cipher transformations in Sec. 3.1 can be
inverted and then implemented in reverse order to
produce a straightforward Inverse Cipher for the
AES algorithm. The individual transformations used
in the Inverse Cipher -InvShiftRows(),
InvSubBytes(), InvMixColumns(), and
AddRoundKey() – process the State and are
described in the following subsections.

The Inverse Cipher is described in the pseudo code
in Fig.4. In Fig.4, the array w [] contains the key
schedule, which was described previously

Fig.4. Pseudo Code for the Inverse Cipher

3. Discussion of Results

The developed project is simulated and verified
their functionality. Once the functional verification is
done, the RTL model is taken to the synthesis
process using the Xilinx ISE tool. In synthesis
process, the RTL model will be converted to the
gate level netlist mapped to a specific technology
library. Here in this Spartan 6 family, many different
devices were available in the Xilinx ISE tool. In
order to synthesis this design the device named as
“XC6SLX4” has been chosen and the package as
“TQG144” with the device speed such as “-3”.

4. Conclusion

At present the data is encrypted at 1GBPS speed,
each input takes 63 clock cycles to generate cipher
text. With Advanced Encryption, the data is
encrypted at 100 Gbps speed, i.e each input takes
one clock cycle to generate cipher text. A
combinational logic based S-Box for the SubByte
transformation is discussed and its internal
operations are explained. As compared to the
typical ROM based lookup table, the presented
implementation is both capable of higher speeds
since it can be pipelined and small in terms of area
occupancy (43 slices for a 2 stage pipeline on a

International Journal of Electrical and Computer System Design, Vol. 01, pp.11-14

Sai Teja, Ashwin, Pavan 14

Spartan II XCS200-5FPGA). This compact and high
speed architecture allows the S-Box to be used in
both area-limited and demanding throughput AES

chips for various applications, ranging from small
smart cards to high speed servers.

Fig.5. Simulation result for Encryption

Fig.6. Simulation result for Joint Encryptor and Decryptor

References:

1. AES page available via http://www.nist.gov/CryptoToolkit.
2. Computer Security Objects Register (CSOR):

http://csrc.nist.gov/csor/.
3. J. Daemen and V. Rijmen, AES Proposal: Rijndael, AES

Algorithm Submission, September 3, 1999, available at [1].
4. J. Daemen and V. Rijmen, The block ciphers Rijndael,

Smart Card research and Applications, LNCS 1820,
Springer-Verlag, pp. 288-296.

5. B. Gladman’s AES related home page
http://fp.gladman.plus.com/cryptography_technology/.

6. A. Lee, NIST Special Publication 800-21, Guideline for
Implementing Cryptography in the Federal Government,

National Institute of Standards and Technology, November
1999.

7. A.Menezes, P. van Oorschot, and S. Vanstone, Handbook
of Applied Cryptography, CRC Press, New York, 1997, p.
81-83.

8. J. Nechvatal, et al., Report on the Development of the
Advanced Encryption Standard (AES), National Institute of
Standards and Technology, October 2, 2000.

