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Abstract: The Advanced Encryption Standard (AES) specifies a FIPS-approved cryptographic 
algorithm that can be used to protect electronic data. The AES algorithm is a symmetric block cipher 
that can encrypt (encipher) and decrypt (decipher) information. Encryption converts data to an 
unintelligible form called cipher text; decrypting the cipher text converts the data back into its original 
form, called plaintext. The AES algorithm is capable of using cryptographic keys of 128, 192, and 
256 bits to encrypt and decrypt data in blocks of 128 bits. Due to the growth of applications in Internet 
and wireless communication, more and more users require the security measures and devices for 
protecting the data, which users transmit over the channels. Since nobody can guarantee that the 
information will not be stolen over open communication channels, it is a general way to encrypt the 
information before they are transmitted into the channels. The AES algorithm has broad applications, 
including smart cards and cellular phones, WWW servers and automated teller machines (ATMs), 
and digital video recorders. Compared to software implementations, hardware implementations of 
the AES algorithm provide more physical security as well as higher speed.  
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1. Introduction 

 There are many crypto-system developed in 
the past. According to the key type, the cryptography 
can be classified into two types, such as the 
asymmetric-key and symmetric-key cryptography. 
Asymmetric-key cryptography manipulates two different 
keys for encryption and decryption and provides a 
robust mechanism for the key transportation. On the 
other hand, symmetric-key cryptography uses an 
identical key for both encryption and decryption, which 
is more efficient for large amount of data Moreover, 
resource-sharing scheme will also be employed to 
reduce the hardware complexity of the cipher and 
decipher. 

This standard specifies the Rijndael algorithm ([3] and 
[4]), a symmetric block cipher that can process data 
blocks of 128 bits, using cipher keys with lengths of 128, 
192, and 256 bits. Rijndael was designed to handle 
additional block sizes and key lengths; however they 
are not adopted in this standard. 

Throughout the remainder of this standard, the 
algorithm specified herein will be referred to as “the 
AES algorithm.” The algorithm may be used with the 
three different key lengths indicated above, and 
therefore these different “flavors” may be referred to as 
“AES-128”, “AES-192”, and “AES-256”. 

This specification includes the following sections: 

1. Algorithm specification, covering the key expansion, 
encryption, and decryption routines; 

2. Implementation issues, such as key length support, 
keying restrictions, and additional block/key/round 
sizes. 

The standard concludes with several appendices that 
include step-by-step examples for Key Expansion and 
the Cipher, example vectors for the Cipher and Inverse 
Cipher, and a list of references. 

Firstly, a look at the history and background of 
encryption should produce a clearer understanding for 
the need of security and how implementations such as 
the one being produced can help with this need. 

The next part of this review will look at the more specific 
encryption technique known as the Advanced 
Encryption Standard (AES) and explain why it is used, 
how it works and how it can be implemented. Following 
this, the investigation must be expanded to search for 
solutions for the problem at hand. This involves looking 
for possible optimization techniques and how they can 
be incorporated into the solution as well as highlighting 
the differences needed between the two 
implementations. 

In addition, this review will be considering other factors 
which will contribute to the overall performance of the 
final implementations. These factors are likely to have
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a large effect of the overall efficiency of algorithms. 
Finally, due to the rapid advances in the technology 
of encryption and cryptanalysis it is necessary to 
examine the likelihood of the dissertation findings 
being obsolete shortly after they are produced. This 
has been known to happen in the past where 
weaknesses are found in other encryption systems. 
If this was the case then it may be necessary to use 
another encryption standard. 

2. AES Algorithm 

For the AES algorithm, the length of the 
input block, the output block and the State is 128 
bits. This is represented by Nb = 4, which reflects 
the number of 32-bit words (number of columns) in 
the State. 

For the AES algorithm, the length of the 
Cipher Key, K, is 128, 192, or 256 bits. The key 
length is represented by Nk = 4, 6, or 8, which 
reflects the number of 32-bit words (number of 
columns) in the Cipher Key. 

For the AES algorithm, the number of 
rounds to be performed during the execution of the 
algorithm is dependent on the key size. The number 
of rounds is represented by Nr, where Nr = 

10 when Nk = 4, Nr = 12 when Nk = 6, and 
Nr = 14 when Nk =8. 

The only Key-Block-Round combinations 
that conform to this standard are given in Fig. 1. For 
implementation issues relating to the key length, 
block size and number of rounds. 

Figure1. Key-Block-Round Combinations 

For both its Cipher and Inverse Cipher, the AES 
algorithm uses a round function that is composed of 
four different byte-oriented transformations: 1) byte 
substitution using a substitution table (S-box), 2) 
shifting rows of the State array by different offsets, 
3) mixing the data within each column of the State 
array, and 4) adding a Round Key to the State. 
These transformations (and their inverses) are 
described in this section 

 

2.1 Cipher 

At the start of the Cipher, the input is copied to the 
State array using the convention. After an initial 
Round Key addition, the State array is transformed 
by implementing a round function 10, 12, or 14 
times (depending on the key length), with the final 
round differing slightly from the first Nr-1 rounds. 
The final State is then copied to the output.The 
overall structure of AES for the case of 128-bit 
encryption is shown below: 

 

Figure 2: Overall Structure of AES for the case of 
128-bit encryption key 

The round function is parameterized using 
a key schedule that consists of a one-dimensional 
array of four-byte words derived using the Key 
Expansion routine. 

The Cipher is described in the pseudo code 
in Fig. 3. The individual transformations - 
SubBytes(), ShiftRows(), MixColumns(), and 
AddRoundKey() – process the State and are 
described in the following subsections. In Fig.2, the 
array w [ ] contains the key schedule 

As shown in Fig. 3, all Nr rounds are 
identical with the exception of the final round, which 
does not include the MixColumns() transformation. 

Cipher showing values for the State array 
at the beginning of each round and after the 
application of each of the four transformations 
described in the following sections. 
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Fig.3. Pseudo Code for the Cipher 

2.2 Key Expansion 

The AES algorithm takes the Cipher Key, K, and 
performs a Key Expansion routine to generate a 
key schedule. The Key Expansion generates a total 
of Nb (Nr + 1) words: the algorithm requires an 
initial set of Nb words, and each of the Nr rounds 
requires Nb words of key data. The resulting key 
schedule consists of a linear array of 4-byte words, 

The expansion of the input key into the key 
schedule proceeds according to the pseudo code in 
Fig10. 

SubWord() is a function that takes a four-byte input 
word and applies the S-box (Sec. 3.1.1, Fig. 5) to 
each of the four bytes to produce an output word. 
The function RotWord() takes a word [a0,a1,a2,a3] 
as input, performs a cyclic permutation, and returns 
the word [a1,a2,a3,a0]. The round constant word 
array, Rcon[i], contains the values given by [xi-
1,{00},{00},{00}], with x i-1 being powers of x (x is 
denoted as {02}) in the field GF(28), as discussed 
in Sec. 5.2 (note that 

i starts at 1, not 0) performs a cyclic permutation, 
and returns the word [a1,a2,a3,a0]. The round 
constant word array, Rcon[i], contains the values 
given by [xi-1,{00},{00},{00}], with x i-1 being 
powers of x (x is denoted as {02}) in the field 
GF(28), as discussed in Sec. 5.2 (note that i starts 
at 1, not 0). 

From Fig10 it can be seen that the first Nk words of 
the expanded key are filled with the Cipher Key. 

the previous word, w[i-1], and the word Nk positions 
earlier, w -

-

round constant, Rcon[i]. This transformation 
consists of a cyclic shift of the bytes in a word 
(RotWord()), followed by the application of a table 
lookup to all four bytes of the word (SubWord()). 

2.3 Inverse Cipher 

The Cipher transformations in Sec. 3.1 can be 
inverted and then implemented in reverse order to 
produce a straightforward Inverse Cipher for the 
AES algorithm. The individual transformations used 
in the Inverse Cipher -InvShiftRows(), 
InvSubBytes(), InvMixColumns(), and 
AddRoundKey() – process the State and are 
described in the following subsections. 

The Inverse Cipher is described in the pseudo code 
in Fig.4. In Fig.4, the array w [] contains the key 
schedule, which was described previously 

 

Fig.4. Pseudo Code for the Inverse Cipher 

3. Discussion of Results 

The developed project is simulated and verified 
their functionality. Once the functional verification is 
done, the RTL model is taken to the synthesis 
process using the Xilinx ISE tool. In synthesis 
process, the RTL model will be converted to the 
gate level netlist mapped to a specific technology 
library. Here in this Spartan 6 family, many different 
devices were available in the Xilinx ISE tool. In 
order to synthesis this design the device named as 
“XC6SLX4” has been chosen and the package as 
“TQG144” with the device speed such as “-3”. 

4. Conclusion 

At present the data is encrypted at 1GBPS speed, 
each input takes 63 clock cycles to generate cipher 
text. With Advanced Encryption, the data is 
encrypted at 100 Gbps speed, i.e each input takes 
one clock cycle to generate cipher text. A 
combinational logic based S-Box for the SubByte 
transformation is discussed and its internal 
operations are explained. As compared to the 
typical ROM based lookup table, the presented 
implementation is both capable of higher speeds 
since it can be pipelined and small in terms of area 
occupancy (43 slices for a 2 stage pipeline on a 
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Spartan II XCS200-5FPGA). This compact and high 
speed architecture allows the S-Box to be used in 
both area-limited and demanding throughput AES 

chips for various applications, ranging from small 
smart cards to high speed servers.

 

Fig.5. Simulation result for Encryption 

 

Fig.6. Simulation result for Joint Encryptor and Decryptor 
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