
 

 
International Journal of  

Electrical and Computer System Design 
www.ijecsd.com 

 

Mathew Ellison, Frank Stomp  1  

Software Implementation of the Enigma Machine in Python 

Mathew Ellison1, Frank Stomp2 

Navajo Technical University 
P.O Box 849 Crownpoint, NM 87313, USA 

1mattellison00@gmail.com 
 2fstomp@navajotech.edu 

 

Abstract During World War II the German military employed an electromechanical, typewriter-like 
machine to encrypt and decrypt messages. Encryption converted the plaintext into gibberish text, the 
so-called ciphertext. The plaintext could be quickly recovered from the ciphertext when some secret 
information was known.  The German Enigma machine was a rather sophisticated machine for the 
time to ensure secure communication. The current paper presents a description of a software 
implementation using Python 3. 
  

Keywords: Cryptography, Enigma, Python 

 
1. Introduction 

 During WW2, the German military employed an 

electromechanical, typewriter-like machine to ensure 

secure communication. Dubbed the German Enigma 

machine, it converted the original text – the plaintext – 

into unintelligible text – the ciphertext.  The cipher text 

could be easily transformed back into the original text, 

provided some secret information was known. Without 

that secret information obtaining the plaintext from the 

ciphertext was hard. This method of secure 

communication is an example of symmetric key 

encryption (Schneier, 2015) because the sender and 

receiver must share secret information, called the key, 

to securely communicate. The current paper presents a 

description of an implementation of (a version of) the 

German Enigma Machine in Python 3. 

The Enigma machine had many different versions and 

was created in the 1900s for use in the banking and 

railway industries. It was patented in London in the 

1920’s (TheNaziGermany1945, 2013). The German 

military saw potential use for the Enigma Machine in the 

military for secure communication. For its time, the 

underlying encryption techniques were quite 

sophisticated. A picture of the Enigma Machine can be 

found in  (London, 2017). A description of how it worked 

can be found in (Rijmenants, 2021) and in (Kahn,1996). 

The version of the German Enigma machine we 

consider simulating in software is one that had to be 

operated using three rotors, see (Sale, p. 2), chosen 

from a collection of five rotors. These rotors could be 

rearranged in different orders and set in different 

character positions depending on what the operator 

decided to use. (Extending our implementation to more 

rotors is straightforward.) During the war, every morning 

new instructions were used to set up the Enigma 

Machine. These instructions were on a setting sheet 

that had the day, order of the rotors, and the ring setting 

of each rotor. Each ring setting described the initial turn 

of that rotor. The instructions also included the 

plugboard set-up. The plugboard offered an extra layer 

of security by transposing characters. (More details are 

provided in Section 2 below.) Sale (Sale, p. 3) states 

that the total number of combinations is (even for the 

simplest version of the German Enigma Machine) at 

least of the order of 15,000,000,000,000,000,000. 

It was uncrackable until Alan Turing and his colleagues 

found a way to analyze the ciphered messages. For 

example, Alan Turing and his colleagues used a 

machine called the Bombe to decipher messages 

produced by the Enigma Machine. They realized that 

the Enigma Machine could not encrypt a character with 

itself. For example, an ‘A’ could not be encrypted as an 

‘A’. This flaw reduced the number of potential character  

conversions dramatically. Another flaw that caused the 

Enigma Machine to be cracked was the so-called 

double indicator. This was a technique to encode initial 

settings of the rotor, by an operator, and its 

transmission twice. (Repetition in encryption is not 

good.) 



International Journal of Electrical and Computer System Design, Vol. 02, pp.01-04 

Mathew Ellison, Frank Stomp   2 

2. Enigma Machine properties 

The Enigma machine uses rotors that contained the 26 

letters of the alphabet that move in a counterclockwise 

manner. Each rotor had wire ends at each character 

position around the rotor that sent the electric current 

through a path, depending on which wire was 

connected. The machine has three rotors connected. 

The Enigma Machine also used a plugboard to add 

even more security. Its function is to transpose letters. 

For example, if ‘A’ and ‘X’ were paired in the plugboard, 

then ‘X’ would be the output if ‘A’ were the input, and if 

‘X’ were the input, ‘A’ would be the output. 

When a key on the keyboard was pressed, in essence, 

the right rotor turned counterclockwise. Sometimes it 

also caused the middle rotor, and even the left rotor, to 

be turned counterclockwise. Thereafter, that letter is 

replaced by another letter according to the plugboard 

setting. The letter is replaced by another letter by the 

wiring of the right rotor. This process is continued to the 

middle rotor and then to the left rotor. The resulting 

character serves as input to the reflector. The reflector, 

in essence, permutes characters. Then a similar 

process happens in the reverse direction. Eventually, 

the output from the right rotor (in the reverse direction) 

then passes through the plugboard again. Thus, a 

plaintext letter is converted into a ciphertext letter. 

Each component converts the input character into an 

output character by means of an electric current. Once 

the cyphertext character has been produced, the 

current travel through the lamp board and lights up the 

bulb that is associated with the ciphertext character. For 

the machine to decrypt the ciphertext and return the 

original plaintext, both parties need to use the same 

initial settings. 

The Enigma Machine settings were not the only security 

features. Instead of creating messages in normal form, 

four letters were grouped together followed by a space. 

Each row, except possibly the last one, consisted of ten 

groups. The reason was to prevent outsiders from 

determining the length of words. 

 

3. Implementation 

Our implementation in Python 3 can be found at 

(github.com/mattellis101/enigma). The rotors, 

reflectors, and plugboard were modeled using strings. 

The rotor file can instantiate any of the five rotors. A 

string consisting of 26 characters represented each  

actual rotor. (The characters are capital letters only.) 

The strings were taken from (Karonen, 2019). We also 

associate a notch character with each rotor, as used in 

the Enigma Machine. The notch, once passed, allowed 

the next rotor to move one step. (Cf. clock hands when 

reaching the top of the hour.) The reflector file can 

instantiate any of three reflectors. Each reflector is 

modeled using strings. We associated them with the 

label’s ‘A’, ‘B’, and ‘C’.  

We also created a file for the plugboard. The plugboard 

transposes 20 of the 26 characters of the alphabet. The 

six remaining characters were left as is. The class 

Plugboard is described in file plugboard.py. The actual 

permutations are in the plugboard.txt file. (The 

plugboard.txt file can be modified by the user.) 

The user input file contains methods that allow users to 

choose the Enigma Machine settings. The user can 

choose three distinct rotors out of the five rotors. Next 

the user chooses the order of the rotors. The user then 

chooses which character position (ring setting) each 

rotor is set to. Once the rotors have been set, the user 

must pick which reflector to use. Finally, the user is 

asked if they are encrypting or decrypting a message. 

The Enigma file enigma.py is the main file. We import 

the other Python files into the main file. In the Enigma 

file we created methods that encrypt and decrypt the 

message. The message is in a text file called plain.txt. 

We also created another text file in the Enigma main file 

called cipher.txt, this is the text file that will contain the 

encrypted message. When encrypted, the plaintext file 

is left unmodified but the ciphertext file is overwritten 

with a new ciphertext. Similarly, when decrypting, the 

ciphertext file is left unmodified but the plaintext is 

overwritten with a new plaintext. There are other 

software implementations of the Enigma machine. For 

example, an implementation in Python can be found in 

(Enigma Encoder, 2019). In our implementation of the 

Enigma machine, we created a more practical way for 

the user to input the Enigma settings. With the user.py 

file, user input is efficient and Enigma settings are easy 

to adjust. In our implementation we created classes and 

followed the object-oriented methodology, which is not 

present in the code found at (Enigma Encoder, 2019). 

Another difference between the two implementations is 

that we organized the code in separate files, called 

modules in Python. 

 



International Journal of Electrical and Computer System Design, Vol. 02, pp.01-04 

Mathew Ellison, Frank Stomp   3 

4. Running the program 

To run the Enigma Machine, open the plaintext file on 

your computer. Write a message with four characters in 

a group, with ten groups in each row, except possibly 

the last row. Next run the enigma.py file and the user 

will be asked a set of Enigma input settings. This is 

shown in the following figure: 

  

The Enigma program can be run on Python 3.7.4 or a 

later version. When setting up the Enigma Machine, 

each setting has a certain limitation. If, for instance, a 

rotor was chosen that was not one of the five rotors 

created, a message will let the user know that the option 

was invalid and to choose from the options listed. Once 

all the settings are configured, the last question the user 

must answer is either to encrypt or decrypt a message. 

If the user chooses to encrypt a message, the program 

modifies the cipher.txt file. The user then opens this file 

and will see the encrypted message. If the user 

chooses to decrypt a message, the program modifies 

the plain.txt file. 

5. Experimental Results 

In order to obtain the original plaintext message from 

the ciphertext, by decryption, one must use the same 

initial settings as used during the encryption process. 

Using different rotor, plugboard, or reflector settings, 

one will not get the original plaintext back. 

For example, if we encrypt the Turing Test quote by 

Alan Turing, “A computer would deserve to be called 

intelligent if it could deceive a human into believing that 

it was human”. (The last character ‘X’ below indicated a 

period.) 

 

 

The encrypted message shown below is the result of 

the Enigma settings chosen above. 

 

To decrypt the message, the exact Enigma settings 

used in the encrypting of the message must be used to 

decipher the message. Therefore, we must enter the 

same Enigma Settings when decrypting the message. 

 

The output of the decryption process produces the 

original message that was in the plain.txt file. 

The settings in the next example differ in one aspect to 

the previous example. The initial position of the middle 

rotor is different. Instead of setting the middle rotor to 

the character ‘P’, the rotor is set to the character ‘Y” 

 

The cipher text was decrypted but the result did not 

match the plaintext. Therefore, the text produced did 

not match the original plaintext. This is shown in the 

following: 

  

 



International Journal of Electrical and Computer System Design, Vol. 02, pp.01-04 

Mathew Ellison, Frank Stomp   4 

6. Conclusion 

Our Enigma program in Python implements one version 

of the actual Enigma Machines used during WW2. The 

Python program models the Enigma Machine faithfully.  

As sophisticated as the Enigma Machine was in the 

1900s, the Enigma Machine was flawed (Enigma, 

2009). With today’s techniques the Enigma Machine 

can be cracked in minutes as shown in (London, 2017).  

Our implementation can easily be extended to different 

versions of the German Enigma machine. For example, 

we used three rotors, but this can easily be modified to 

add a fourth or fifth rotor. Another part of the Enigma 

Machine software that can be modified is the plugboard. 

Instead of permutated ten pairs of characters this can 

be modified up to thirteen pairs of characters.   

 

Acknowledgements: 

This work was supported by grants from the 

Department of Energy #DE-NA0003946. Any opinions, 

findings, and conclusions or recommendations 

expressed in this material are those of the authors and 

do not necessarily reflect the views of the Department 

of Energy.  

 

References: 

1. Hodges, Andrew. “Alan Turing: The Enigma” November 
2014. 

2. Kahn , David. “The Code-Breakers- The Comprehensive 
History of Secret Communication from Ancient Times to 
the Internet” , 1996 

3. Karonen, Ilmari. “Enigma Rotation Example.” 
Crypto.stackexchange.com, June 2019, 
crypto.stackexchange.com/questions/71231/enigma-
rotation-example. Accessed 1 March 2020. 

4. London, Andrew. "We Watched an AI Crack the Enigma 
Code in Just over 10 Minutes." TechRadar, 1 Dec. 2017, 

www.techradar.com/news/we-watched-an-ai-
crack-the-enigma-code-in-just-over-ten-minutes. 

Accessed 31 May 2021 
5. Rijmenants, Dirk, “Technical Details of the Enigma 

Machine”, 2021, 
users.telenet.be/d.rijmenants/en/enigmatech.htm, 
Accessed 6 July 2021 

6. Sale, Tony. “The Enigma Cipher Machine”, 
www.codesandciphers.org.uk/enigma, Accessed 
14 June 2021. 

7. Schneier, Bruce. “Applied Cryptography: Protocols, 
Algorithms and Source Code in C. 20th Anniversary 
Edition”, 2015.    

8. TheNaziGermany1945. “Greatest Mysteries of World 
War 2 Hitler's Engima (sic).” YouTube, 22 June 2013, 

www.youtube.com/watch?v=y_BL0M08-B4, 

Accessed 2 Jan. 2020. 
9. “Enigma”, 07, July 2009, 

www.cryptomueum.com/crypto/enigma/working.htm, 
Accessed 19 July 2021 

10. “Enigma Encoder”, 29 May 2019, 
www.101computing.net, Accessed 5 Jan. 2020 

 


