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Abstract: The well-known additive manufacturing technique, known as Fused Deposition Modelling (FDM), is 
employed in many different sectors. The main disadvantage of the FDM technique is the increased surface 
roughness. The laser polishing method has been used to get around the challenge. The laser polishing method 
may be used to prepare the accurate and smooth FDM component surfaces. In this study, laser polishing was used 
to refine Polylactic Acid-Aluminum Fibre (PLA-Al fibre) composites made using the FDM process. At various speeds 
of laser scanning, the polished PLA-Al fibre composite's surface properties and mechanical effects were examined. 
The results indicate that the surfaces of PLA-Al fiber composites, when polished, exhibit lower surface roughness 
compared to unpolished samples. Dynamic mechanical analysis revealed an enhanced storage modulus in laser-
polished specimens.  

Keywords: Additive Manufacturing; Fused Deposition Modelling; laser surface irradiation; Surface roughness; 
Mechanical characteristics. 

 

 

1. Introduction 

 Additive manufacturing stands out as a 
significant manufacturing process due to its rapid 
processing and broad applicability. [1-8]. Due to its low 
operating costs, superior environmental friendliness, 
affordable equipment, etc., the Fused Deposition Modelling 
method is primarily adopted by numerous industries [8-19]. 
The Fused Deposition Modeling (FDM) technique employs 
thermoplastic and thermosetting polymers as its primary 
constituents. Among the thermoplastic polymers utilized are 
Polycarbonate, Polyamide, Polylactic Acid, and Acrylonitrile 
Butadiene Styrene. [20]. Pure polymers, however, are not 
appropriate for novel uses [21]. Polymer composites 
thereby resolve these problems. For polymer composites, 
metal and glass fibers in particular are used as 
reinforcement [22–27]. 

The laser polishing technique was used to reduce 
the part's surface roughness. A laser source is used to heat 

the material surfaces during this operation. By remelting the 
surfaces, it is a non-contact process with customizable 
polishing velocity [28, 29]. To reduce the oxidation of the 
inert gases used in the laser polishing process. Due to fluid 
pressures in the melt area, the laser source quickly polishes 
the material surfaces. The portions that can't be polished 
using traditional methods, like intricate parts, can be easily 
polished by laser irradiation [30]. These advantages led to 
the replacement of the traditional method by the laser 
polishing method in a number of applications. 

Chai et al. found that the FDM technique 
significantly reduced the surface roughness of the PLA by 
68%. This was accomplished using a CO2 laser and a 
scanning velocity of 150 mm/s [31]. Yung et al. found that 
the laser-polished specimens exhibited an 8% increase in 
hardness compared to those processed with the SLM 
equipment. [32] T. He et al. developed an effective method 
to reduce the roughness of CoCr alloys with complex 
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geometrical surfaces by up to 93%. [33] Attained the 
highest reduction in roughness, reaching 0.156 nm, without 
causing any degradation for bonded silica, as reported by 
L. Gurau et al [34], In contrast to some mechanically treated 
specimens, laser-polished Additive Manufacturing (AM) 
CoCr alloy devices demonstrated a surface roughness of 
0.45 μm and approximately 30% improved corrosion 
resistance. 

In this study, laser polishing was used to refine 
Polylactic Acid-Aluminum Fiber (PLA-Al fiber) composites 
made using the FDM process. The existing literature 
indicates a gap in research regarding the mechanical 
characteristics and surface roughness of PLA-Al fiber 
composites in earlier studies. This prompted an 
investigation into the surface properties and mechanical 
effects of laser-polished PLA-Al fiber composites at 
different scanning speeds. Energy-dispersive spectrum 
(EDS) analysis was used to characterize the produced 
samples. Profilometry was used to examine the PLA-Al 
composites' surface roughness. The goal of the dynamic 
mechanical analysis study was to examine the behavior of 
polished and unpolished specimens moving at different 
speeds. 

2. Experimental features 

2.1.  Materials and specimen formulation 

The samples were made using 1.5 mm diameter 
PLA/Al filament. Al fiber makes for 6.7 weight percentage of 
the PLA/Al filament. The FDM-style 3D printer was used to 
create the PLA/Al composites. The DMA samples were 
prepared in accordance with ASTM D5023-15 standards. 
The bed was kept at a temperature of 59°C while the nozzle 
was heated to 199°C. at a rate of 1000 mm/min, the nozzle 
feeds the necessary amount of melted filament along the 
path. 

2.2.  Laser polishing technique  

A fiber laser and 200 W of powder were used to polish the 
created specimen. A diode employing an on/off mechanism 
was utilized to control a pulse laser for the purpose of 
polishing the object. The scanning path and the depositing 
position are vertical to one another. The surfaces of the 
PLA/Al composites were melted after the laser was applied. 
The liquid substance that comes from the top surfaces 
flooded the valley regions. The laser source was then turned 
off, solidifying the PLA/Al composites. This method helps to 
reduce the surface's roughness. The three different scan 
rates used for this procedure are 40, 80, and 120 mm/s. 

2.3  EDS Characterization 

Characterizing a polished PLA/Al composite and an 
unpolished PLA/Al composite was conducted using EDS at 

a scan velocity of 80 mm/s. is shown in Fig. 1(a) and (b), 
respectively. The two main components seen in Fig. 1(a & 
b) are Al and Au. Gold splutter caused Au to show up in the 
EDS. Along with Al and Au, the elements C and O are also 
present. The element is thus present in the PLA/Al 
composites, according to EDS data. 

 

Fig. 1 Analyzing PLA/Al composites using EDS involved 
examining an (a) unpolished specimen and (b) polished 
specimen 2 at a scan velocity of 80 mm/s. 

2.4  Experimentation 

2.4.1 Surface roughness examination 

The profilometry tester was used to assess the 
PLA/Al composites' roughness. The stylus type contact 
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profilometer was used to measure the arithmetic mean 
height and arithmetic mean deviation parameters. 
Conducting experiments at a speed of 0.5 mm/sec, the trials 
utilized a diamond stylus probe with a radius of 5 m. 

2.4.2  Dynamic mechanical examination 

The dynamic mechanical behavior of the PLA/Al 
composites is examined using the DMA device. The 
temperature was examined via DMA analysis over a 30 mm 
span. The experiment was carried out at a frequency of 1 
Hz and a temperature range of 29 to 174o C. 

 

3.  Results and discussion 

3.1  Surface roughness examination 

Fig. 2 (a) shows the unpolished PLA/Al composite's 
2D roughness data. Fig. 2(b-d) Illustrating the impact of 
laser scanning velocity on the roughness of PLA/Al 
composite surfaces, Figure 2(b) displays the roughness 
profile of laser-polished surfaces at a speed of 40 mm/s. 
Similarly, Figure 2(c) depicts the roughness profile at a 
speed of 80 mm/s, while Figure 2(d) shows the roughness 
profile at 120 mm/s. The FDM 3D printing allowed for the 
identification of the valley and peak in Fig. 2 (a), which has 
a Ra value of 24.42 μm. 

Similar to this, the Ra values of the 40, 80, and 120 
mm/s laser polished PLA/Al composites are 4.62 μm, 3.11 
μm, and 3.42 μm, respectively. It was established that the 
surfaces of the polished PLA/Al composite have Ra values 
that are much lower than those of the unpolished composite. 
Lower Ra values are especially prevalent in 100 mm/s laser 
polished composites. 
The unpolished composite exhibits an Sa value of 23.82 μm. 
In contrast, the Sa values for laser-polished PLA/Al 
composites at speeds of 40 mm/s, 80 mm/s, and 120 mm/s 
are 6.52 μm, 5.51 μm, and 5.84 μm, respectively. This 
confirms that the surfaces of the polished PLA/Al composite 
have significantly lower Sa values compared to the 
unpolished composite. Specifically, composites subjected to 
laser polishing at 80 mm/s demonstrate the lowest Sa 
values. Despite achieving the lowest possible roughness 
rating, minor valleys and peaks are present in the laser-
polished composites, attributed to the limited solidification 
time during laser polishing, resulting in the formation of 
small valleys and peaks. 

 

 

 

 

Fig. 2. The surface roughness profiles of PLA/Al composites 
under varying laser scanning velocities are depicted in 
Figure (a) for the unpolished PLA/Al composite, (b) at 40 
mm/s, (c) at 80 mm/s, and (d) at 120 mm/s 

Initially, the quality of the PLA/Al composite improves with 
an increase in scanning velocity. However, as the scanning 
speed continues to rise, the quality of the PLA/Al composite 
deteriorates. This was brought on by the extra time needed 
for the minimum solidification scanning velocity. These 
outcomes precisely reflect the sources [35, 36]. 

3.3 Dynamic mechanical performance 

The dynamic mechanical behavior of the PLA/Al 
composites is depicted in Fig. 4. It conveys the discrepancy 

(a) 

(c) (d) 
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between E′ (the storage module) and the temperature 
change. The polished PLA/Al composites had a greater E′ 
value than the unpolished composites at the lowest 
temperature. Compared to other PLA/Al composites, those 
subjected to a scanning velocity of 80 mm/s exhibited a 
higher E′ value. This phenomenon can be attributed to the 
strong bonding between the PLA and Al layers. [37]. 
Unpolished composite has an E′ of 3.29 Gpa. However, the 
E′ of the 40, 80, and 120 mm/s laser polished PLA/Al 
composites is 4.81, 4.89, and 4.51 Gpa, respectively. It 
verified that the tensile strength had the same effects. 

 

Fig. 4 Conducting DMA analysis on PLA/Al composites 
involved using laser scanning speeds of 40 mm/s for 
specimen 1, 80 mm/s for specimen 2, and 120 mm/s for 
specimen 3. 
 

 

4.  Conclusion 

In this study, the dynamic mechanical properties 
and surface roughness of PLA/Al composites that had been 
laser polished and unpolished were compared. The findings 
that followed were drawn. 

• The FDM 3D printing method was used to create 
the PLA/Al composites. PLA and Al elements are 
confirmed to be present by the EDS analysis. 

• Through the application of laser polishing, the 
surface roughness of the PLA/Al composites was 
reduced. Better surface quality is displayed by the 
laser-polished composite with 80 mm/s scanning 
velocity. The laser polishing procedure decreased 
the roughness characteristics of the PLA/Al 
composites by 88%. 

• Due to their greater modulus value regarding 
temperature, laser polished PLA/Al composites 
behave more mechanically dynamically than 
unpolished composites. 
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